$\mathbf{2 N a}+\mathbf{C l}_{2} \Rightarrow \mathbf{2 N a C l}$

 The
Language

Хүєцгот $\rho \psi$ 七 σ $\varepsilon \varpi \varepsilon \rho \psi \omega\rceil \varepsilon \rho \varepsilon!$

Chemistry

酸it Chemistrie ist sehr gut!

Viva la Chemitry!

Unit 3
©1997 Mark A. Case

Is if fime for Lunch, yet?

Unit 3: The Language of Chemistry

I. The Significance of Chemical Formulas

A chemical formula is a combination of symbols that represents the composition of a compound. Formulas indicate the elements that are present in the compound and the relative number of atoms of each element. For example, table salt is an ionic compound made up of 1 part sodium and 1 part chlorine, as indicated by its chemical formula, NaCl . The simple sugar glucose consists of carbon, hydrogen and oxygen and is represented by the formula, $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$. Note that the subscripts indicate that a molecule(formula unit) of glucose contains 6 carbon atoms, 12 hydrogen atoms and 6 oxygen atoms. There are also 7 elements (HINClBrOF) that usually exist in nature as diatomic molecules, written as $\mathrm{H}_{2}, \mathrm{I}_{2}$, etc. The subscript 2 indicates that two atoms of the same element are chemically attached together in this molecular form.
Coefficients are placed in front of chemical formulas in equations to indicate when more than one unit is involved. They act as a multiplier for the number of atoms present in the chemical formula. For the reaction of glucose burning in air, the chemical equation would be written as follows: $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}+6 \mathrm{O}_{2}--->6 \mathrm{CO}_{2}+6 \mathrm{H}_{2} \mathrm{O}$

Since one glucose molecule contains 6 carbon atoms, it was necessary to place a coefficient of 6 in front of the CO_{2} formula. (The total number of atoms of each element in the reactants must equal the total number of atoms of each element in the products.) $6 \mathrm{CO}_{2}$ indicates that there are 6 separate molecules(formula units) of CO_{2} which would contain a total of 6 carbon atoms and
12(6 x 2) oxygen atoms. A formula unit is a generic term used to describe either one molecule of a compound or the smallest whole-number ratio of ions that make up an ionic substance.

Problem:

What is the total number of oxygen and hydrogen atoms on each side of the arrow in the equation above?

Some formulas can get quite complicated, as chemists try to represent the exact composition of various compounds. Parentheses are sometimes used around polyatomic ions(charged groups of atoms) found in the chemical formula. For example, the chemical formula that represents the compound calcium phosphate(known as the soap scum ring in your tub) is $\mathrm{Ca3}\left(\mathrm{PO}_{4}\right)$ 2. This formula shows that 3 Ca atoms combine with 2 of the PO_{4} (phosphate) groups, which gives a total of 2 P atoms and 8 O atoms.

Many solids have water molecules that are physically trapped within their crystal structures. They are said to be hydrated solids. To indicate the relative number of water molecules that are attached to each formula unit of the compound, the following notation is used: $\mathrm{CuSO}_{4}{ }^{\bullet} 5 \mathrm{H}_{2} \mathrm{O}$ In this example, one molecule of CuSO_{4} is combined with 5 molecules of water. Only a physical combination exists between the two compounds, and the water can be easily boiled off by heating the solid in the lab. A coefficient of 2 placed in front of this formula, $2 \mathrm{CuSO}_{4}{ }^{\circ} 5 \mathrm{H}_{2} \mathrm{O}$, indicates two separate formula units of $\mathrm{CuSO}_{4}{ }^{\bullet} \mathrm{SH}_{2} \mathrm{O}$ are present. This means there are 2 Cu atoms, 2 S atoms, a total of 18 O atoms $\left(8\right.$ from the two CuSO_{4} units and 10 from the ten $\mathrm{H}_{2} \mathrm{O}$ units) and 20 H atoms(from the $2 \times 5 \mathrm{H}_{2} \mathrm{O}$).

Problems:

Determine the total number of atoms of each element found in the following formulas: $\mathrm{Ag}_{2} \mathrm{CO}_{3} \quad 3 \mathrm{H}_{3} \mathrm{PO}_{4} . \quad 6 \mathrm{Fe}\left(\mathrm{NO}_{3}\right) 2 \quad 4 \mathrm{BaCl}_{2} \bullet 2 \mathrm{H}_{2} \mathrm{O} \quad \mathrm{AlK}\left(\mathrm{SO}_{4}\right) 2 \bullet 12 \mathrm{H}_{2} \mathrm{O}$

II. Writing Chemical Formulas

Elements will gain, lose or share electrons to chemically combine together and form compounds. In the process, some of the elements will try to obtain a positive electrical charge by losing electrons, while others will try to become negatively charged by gaining electrons. Chemists believe that the number of electrons found in the atoms of the Inert Gases(He 2, Ne 10, $\mathrm{Ar} 18, \mathrm{Kr} 36, \mathrm{Xe} 54$ and Rn 86) have a particularly stable arrangement, and the other elements react to obtain this same electron structure, too. Atoms or groups of atoms that are electrically charged are called ions. The real or apparent electrical charge formed by the loss or gain of electrons when the atoms make a compound are indicated by oxidation numbers. For compounds, the sum of all of the atoms' oxidation numbers must equal zero.
To write a chemical formula for a compound given its name, such as aluminum sulfate, complete the following steps:

1. Write the symbols of the positive and negative ions based on the compound's name. The positive ion is usually written first.

EX: aluminum is Al sulfate, a polyatomic ion, is SO_{4}
2. List the electrical charges(oxidation numbers) for the positive and negative ions.

EX: $\quad \mathrm{Al}$ has a $3+$ charge, $\mathrm{Al}^{3+} \mathrm{SO}_{4}$ has a 2 - charge, $\mathrm{SO}_{4}{ }^{2-}$
3. Balance the charges by determining the least common multiple of the positive and negative charge, using the criss-cross method.
EX: The least common multiple between 3+ and 2 -is 6
Two Al^{3+} ions will combine with three $\mathrm{SO}_{4}{ }^{2-}$ ions.

4. Rewrite the formula using subscripts to indicate the number of positive and negative ions needed.

EX: Rewrite the formula without showing the charges. $\mathrm{Al}_{2} \mathrm{SO}_{4} 3$
5. Place parentheses around any polyatomic ions that are used more than once.

EX: The SO_{4} ion needs parentheses to indicate $3 \mathrm{SO}_{4}$ groups. $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$

Problems:

Look up the charges and formulas in your textbook for the ions used in the compounds below. Then write the correct chemical formulas for the following compounds:

1. calcium iodide \qquad
2. sodium bromide \qquad
3. tin (IV) fluoride \qquad
4. zinc chloride \qquad
5. calcium nitrate
6. potassium selenide
7. copper (II) phosphide
8. vanadium (V) oxide
9. iron(III)oxide
10. ammonium hydroxide
\qquad
\qquad

III. Learning the Common Ions

General patterns and tendencies exist for determining the charges and names of the ions formed when elements combine to make compounds. These generalizations can be used to predict the chemical formulas and names of the compounds. Refer to the periodic table below while examining the patterns that follow.
IA Common Oxidation Numbers of the Elements VIIA

A. Names and Charges of Metallic Ions

1. Metals in Groups IA, IIA, and IIIA will form ions that have charges of $1+, 2+$, and $3+$ respectively. These positive ions have only one possible charge and are named by using the name of the element. For example, a sodium atom loses 1 electron to have the same number as neon(10 electrons), but still has 11 protons. Therefore, the sodium ion $=\mathrm{Na}^{1+}$. The Mg^{2+} magnesium ion also has 10 electrons, but 12 protons.
aluminum ion = \qquad $\mathrm{K}^{1+}=$ \qquad zinc ion \qquad
2. Metals(or nonmetals) that have several positive oxidation states must indicate the charge of the ion by writing a Roman numeral in parentheses following the name of the element.
EX: copper (II) ion $=\mathrm{Cu}^{2+} \quad \mathrm{Sn}^{4+}=\operatorname{tin}$ (IV) ion \quad iron (II) ion $=\mathrm{Fe}^{2+}$ lead (IV) ion $=$ \qquad
\qquad chromium (III) ion $=$ \qquad

B. Names and Charges of Nonmetallic Ions

1. Negative, monatomic(one atom) ions are named by using the root word of the nonmetal and adding the suffix -ide. Nonmetals in Groups VIIA, VIA, VA and IVA will form ions that have charges of $1-, 2$-, 3 -, and 4 - respectively in binary(two element) compounds. For example, a fluorine atom gains 1 electron to have the same number as neon(10 electrons), but still has only 9 protons. Therefore, the fluoride ion $=$ Fl$^{1-}$. The oxide and nitride ions will also have 10 electrons, but only 8 and 7 protons, and are written as O^{2-} and N^{3-}.
iodide ion = \qquad $\mathrm{S}^{2-}=$ \qquad phosphide ion $=$ \qquad
Exceptions: Not all -ide endings belong to binary compounds
EX: potassium cyanide $=\mathrm{KCN} \quad \mathrm{NH}_{4} \mathrm{OH}=\underline{\text { ammonium }}$ hydroxide
2. Negative polyatomic ions are formed by the combination of a nonmetal and varying numbers of oxygen atoms. The charge of the polyatomic ion is usually the same as the charge of the -ide ion. Prefixes and/or suffixes are added to the root word of the nonmetal to indicate the number of oxygen atoms in the ion. The following pattern is used:
per- ----ate (1 MORE oxygen atom than the -ate ion)
---- -ate
---- -ite (1 LESS oxygen atom than the -ate ion)
hypo- ----- -ite (2 LESS oxygen atom than the -ate ion)
The number of oxygens in the -ate ion can be determined by using the generalizations based on the "Slivka square" of elements on the periodic chart. Those elements outside of the square form -ate ions with an XO_{3} formula. Those elements inside of the square form -ate ions with an XO_{4} formula.

Slivka's Square
IIIA IVA VA VIA VIIA

B	B C			
Al	Si	P	S	Cl
Ga	Ge	As	Se	Br
In	Sn	Sb	Te	I
$\mathrm{Tl} \quad \mathrm{Pb} \quad \mathrm{Bi}$ Po At				

Outside Square Inside Square chlorate $\mathrm{ClO}_{3}{ }^{1-} \quad$ sulfate $\mathrm{SO}_{4}{ }^{2-}$

| bromate $\mathrm{BrO}_{3}{ }^{1-}$ | selenate $\mathrm{SeO}_{4}{ }^{2-}$ |
| :---: | :---: | :---: |
| iodate IO_{3}^{1-} | phosphate $\mathrm{PO}_{4}{ }^{1-}$ |
| *nitrate $\mathrm{NO}_{3}{ }^{1-}$ | arsenate AsO_{4}^{3-} |
| * carbonate $\mathrm{CO}_{3}{ }^{2-}$ | tellurate TeO_{4}^{2-} |

*charge is different than -ide ions

Once the formula and charge of the -ate ion is determined, the other polyatomic ions vary only in the number of oxygens.

chloride	Cl^{1-}	sulfide	S^{2-}	nitride	N^{3-}
perchlorate	COO_{4}^{1-}	persulfate	SO_{5}^{2-}	pernitrate	$\mathrm{NO}_{4}{ }^{1-}$
chlorate	CO_{3}^{1-}	sulfate	SO_{4}^{2-}	nitrate	NO_{3}^{1-}
chlorite	CO_{2}^{1-}	sulfite	$\mathrm{SO}_{3}{ }^{2-}$	nitrite	NO_{2}^{1-}
hypochlorite	ClO^{1-}	hyposulfite	$\mathrm{SO}_{2}{ }^{2-}$	hyponitrite	NO^{1-}

This same pattern applies for a polyatomic ion of elements in group "A" or "B". EX: chlorate, $\mathrm{ClO}_{3}{ }^{1-}$ from group VIIA and manganate, $\mathrm{MnO}_{3}{ }^{1-}$ from group VIIB

NOTE: Even though we can predict and write formulas and charges for these polyatomic röns, some might not actually exist in nature!

Negative polyatomic ions sometimes combine with hydrogen atoms(that have an oxidation number of $1+$) to form a new ion. The word hydrogen is added to the original name of the polyatomic ion and the negative charge is decreased by one for each hydrogen atom present.
EX: hydrogen sulfate $=\mathrm{HSO}_{4}{ }^{1-} \quad \mathrm{HSO}_{3}{ }^{1-}=$ hydrogen sulfite

$$
\begin{array}{r}
\text { hydrogen phosphate }=\mathrm{HPO}_{4}^{2-} \quad \underset{\text { note the "di" prefix indicates } 2 \text { hydrogen }}{\mathrm{H}_{2} \mathrm{PO}_{4}^{1-}=* \text { dihydrogen phosphate }} \\
\text { *ne }
\end{array}
$$ atoms

$$
\text { hydrogen carbonate }=\quad \quad \mathrm{H}_{2} \mathrm{AsO}_{3}{ }^{1-}=
$$

\qquad
Some ions have no simple rule and must be memorized.
EX: acetate $=\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{1-} \quad$ cyanide $=\mathrm{CN}^{1-} \quad$ hydroxide $=\mathrm{OH}^{1-}$
There are eight common polyatomic ions that are found in hundreds of household chemicals. The names and formulas of these ions should be memorized to expedite formula writing. These are: acetate $\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}{ }^{1-}$ (also written as $\mathrm{CH}_{3} \mathrm{COO}^{1-}$) ammonium $\mathrm{NH}_{4}{ }^{1+} \quad$ carbonate $\mathrm{CO}_{3}{ }^{2-} \quad$ chlorate $\mathrm{ClO}_{3}{ }^{1-}$ hydroxide OH^{1-} nitrate $\mathrm{NO}_{3}{ }^{1-} \quad$ phosphate $\mathrm{PO}_{4}{ }^{\mathbf{3}}$ sulfate $\mathbf{S O}_{4}{ }^{\mathbf{2 -}}$ Other common polyatomic ions are included in the list below:

hydronium ${ }^{\text {1+ }}$		3-	
	$\mathrm{H}_{3}{ }^{1+}$	arsenate	$\mathrm{AsO}_{4}{ }^{3-}$
1^{-}		arsenite	$\mathrm{AsO}_{3}{ }^{3-}$
bromate	BrO^{1-}	phosphite	$\mathrm{PO}_{3}{ }^{3-}$
bromite	$\mathrm{BrO}_{2}{ }^{1-}$	$2-$	
chlorite	$\mathrm{COO}_{2}{ }^{\text {- }}$	chromate	$\mathrm{CrO}_{4}{ }^{2-}$
cyanide	CN1-	dichromate	$\mathrm{Cr}_{2} \mathrm{O}_{7}{ }^{\text {- }}$
dihydrogen phosphate	$\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{1-}$	hydrogen phosphate	$\mathrm{HPO}_{4}{ }^{2-}$
hydrogen carbonate	$\mathrm{HCO}_{3}{ }^{1-}$	molybdate	$\mathrm{MoO}_{4}{ }^{2-}$
hypobromite	BrO^{1-}	oxalate	$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{\text {- }}$
hypochlorite	ClO ${ }^{-}$	peroxide	$\mathrm{O}_{2}{ }^{\text {- }}$
hypoiodite	IO1-	selenate	$\mathrm{SeO}_{4}{ }^{2-}$
iodate	$\mathrm{IO}_{3}{ }^{1-}$	silicate	$\mathrm{SiO}_{3}{ }^{2-}$
nitrite	$\mathrm{NO}_{2}{ }^{1-}$	sulfite	$\mathrm{SO}_{3}{ }^{2-}$
perbromate	$\mathrm{BrO}_{4}{ }^{1-}$	tellurate	$\mathrm{TeO}_{4}{ }^{2-}$
perchlorate	$\mathrm{COO}_{4}{ }^{-}$	thiosulfate	$\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$
periodate	$\mathrm{IO}_{4}{ }^{1-}$	tungstate	WO4 ${ }^{2-}$
permanganate	$\mathrm{MnO}_{4}{ }^{\text {1- }}$		
thiocyanate	SCN ${ }^{1-}$		
vanadate	$\mathrm{VO}_{3}{ }^{\text {- }}$		

IV. Naming compounds

The name of a chemical compound must provide enough information to specify exactly which elements have combined together and the number of atoms of each element present. The general rules for naming the ions(as previously described) are applied when determining the name from a given chemical formula.
To determine the name for a compound given its chemical formula, such as $\mathrm{Al}_{2}\left(\mathrm{SO}_{4}\right)_{3}$, complete the following steps:

1. Identify and write the names of any polyatomic ions.

EX: SO_{4} is the "sulfate" ion
2. Write the name(modified to end in -ide) of any negative monatomic ions.

EX: The sulfate ion is the negative ion in this example. No -ide ion exists.
3a. Name any positive monatomic ions that have only 1 possible oxidation number.
EX: Al always has a $3+$ oxidation number, so it is simply named as "aluminum"

3b. Determine the charge of any positive monatomic ion that could have several possible oxidation numbers. Remember that the sum of all charges(oxidation numbers) MUST add up to zero. Write the name of the positive ion using a Roman numeral inside of parentheses to indicate its charge.

EX: The aluminum in this example can only have a 3+ charge, so no Roman numeral is required.
The name of this compound is aluminum sulfate.

Additional Examples:

$\mathrm{Cu}_{2} \mathrm{CO}_{3} \quad \mathrm{CO}_{3}$ is the carbonate polyatomic ion with a 2 - charge
Cu is copper, which can have more than one charge. Since there are 2 Cu atoms combined with 1 carbonate ion, the charge of each Cu must be $1+$ The name of this compound is copper(I) carbonate.
CO_{2} There are no polyatomic ions present. The carbon will have a positive oxidation number and the oxygen will be negative. Oxygen has a 2 charge and is called oxide. The charge of each C atom must be 4+ . The name of this compound is carbon (IV) oxide. A more common name is carbon dioxide.

Problems:

Write the correct names for each of the following compounds:

$\mathrm{N}_{2} \mathrm{O}$	CuSO_{4}	$\mathrm{Fe}_{3}\left(\mathrm{PO}_{4}\right)_{2}$
FeBr_{3}	$\mathrm{Na}_{2} \mathrm{~S}$	$\mathrm{~Pb}\left(\mathrm{ClO}_{3}\right)_{2}$
CaCl_{2}	$\mathrm{NH}_{4} \mathrm{NO}_{3}$	$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}$

V. Other Methods of Naming Compounds

Sometimes othè̀r methods can are used for naming specialized groups of compounds, such as acids and organic compounds. There are also some outdated methods that occasionally appear on labels or in the literature. A brief description of the other methods is included in this packet to provide an insight to their application and usage.
A. Binary Molecular compounds (nonmetal combined with a nonmetal) can be identified with an older naming system that uses Greek prefixes to indicate the number of atoms of each element that are present, as determined by the subscripts in formula. The prefixes used are:
mono- $=1$ di- $=2$ tri- $=3$ tetra- $=4$ penta- $=5$ hexa- $=6$ hepta- $=7$ octa- $=8$
Formula Common Name Preferred Name
CS_{2} carbon disulfide carbon (IV) sulfide
$\mathrm{N}_{2} \mathrm{O}_{5}$ dinitrogen pentoxide nitrogen (V) oxide
CO carbon monoxide carbon (II) oxide (note the prefix "mono-" is omitted from the name of the first element)
B. Binary Ionic compounds (metal combined with a nonmetal) can be identified with an older naming system that uses Latin root names for metallic ions with several oxidation states. An -ous suffix indicates a lower oxidation state, -ic a higher one. iron $(\mathrm{II})=$ ferrous $\mathrm{Fe}^{2+} \quad$ copper $(\mathrm{I})=$ cuprous $\mathrm{Cu}^{1+} \quad \operatorname{tin}(\mathrm{II})=$ stannous Sn^{2+} iron (III) $=$ ferric $\mathrm{Fe}^{3+} \quad$ copper (II) $=$ cupric $\mathrm{Cu}^{2+} \quad$ tin (IV) $=$ stannic Sn^{4+}
C. Binary aqueous acid compounds (recognized because hydrogen is the first element that is combined with an -ide ion) are named by using the pattern:
hydro- (root word of negative element) -ic acid
If the H -compound is dissolved in water(aqueous), it becomes an acid with acid properties.

| EX: | $\mathrm{HCl}(\mathrm{aq})$ | hydrochloric acid | | $\mathrm{HF}(\mathrm{aq})$ |
| :--- | :--- | :--- | :--- | :--- | hydrofluoric acid

D. Three-element acid compounds (hydrogen with a polyatomic ion) are called ternary or oxyacid compounds. The name of the acid depends upon the name of the polyatomic ion that is combined with the hydrogen. Use these patterns to name the acids:

hydrogen	per ----- ate	changes to changes to	per ----- ic acid
hydrogen	ic acid		
hydrogen	---- ate	ite changes to	---- ous acid
hydrogen	hypo ---- ite	changes to	hypo--- ous acid

EX: $\mathrm{H}_{2} \mathrm{SO}_{5}(\mathrm{aq})$
hydrogen persulfate becomes persulfuric acid $\mathrm{H}_{3} \mathrm{PO}_{4}(\mathrm{aq})$ hydrogen phosphate becomes phosphoric acid $\mathrm{HNO}_{2}(\mathrm{aq})$ hydrogen nitrite becomes nitrous acid $\mathrm{HBrO}(\mathrm{aq}) \quad$ hydrogen hypobromite becomes hypobromous acid

Problems:

Write the names of the following ternary acids:

HIO(aq)
$\mathrm{HC}_{2} \mathrm{H}_{3} \mathrm{O}_{2}(\mathrm{aq})$
$\mathrm{H}_{2} \mathrm{CO}_{3}(\mathrm{aq})$
$\mathrm{HClO}_{4}(\mathrm{aq})$
$\mathrm{H}_{3} \mathrm{PO}_{3}(\mathrm{aq})$
E. Hydrated solids, which have water molecules that are physically trapped within their crystal structures, are named in the usual manner based on which positive and negative ions are present. To indicate the relative number of water molecules that are attached to each formula unit of the compound, the appropriate prefix (mono $=1$, di $-=2$, tri $-=3$, etc.) with the word hydrate are added after the compound's name.
EX: $\mathrm{BaCl}_{2} \cdot 2 \mathrm{H}_{2} \mathrm{O}$ is named as barium chloride dihydrate
$\mathrm{CuSO}_{4} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ is named as copper (II) sulfate pentahydrate

Problems:

Write the names or formulas of the following hydrated solids:
$\mathrm{MgSO}_{4}{ }^{\bullet} 7 \mathrm{H}_{2} \mathrm{O}$ \qquad aluminum chloride hexahydrate \qquad
$\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2} \cdot \mathrm{H}_{2} \mathrm{O}$ \qquad sodium carbonate decahydrate \qquad
F. Double \& Triple Salts can occur when two or three different positive ions are attracted to the same negative ion to form one single compound. The sum of the charges of all ions present must still add up to zero, and the compound name includes the names of all ions present.
EX: $\operatorname{AlK}\left(\mathrm{SO}_{4}\right) 2 \cdot 12 \mathrm{H}_{2} \mathrm{O}$ is named as aluminum potassium sulfate dodecahydrate Two $\mathrm{SO}_{4}{ }^{2-}$ ions are needed to balance the charges of the Al^{3+} and K^{1+} ions.

Ferrous ammonium sulfate hexahydrate consists of $\mathrm{Fe}^{2+}, \mathrm{NH}_{4}{ }^{1+}$, and $\mathrm{SO}_{4}{ }^{2-}$ ions with six water molecules and has the formula of $\mathrm{Fe}\left(\mathrm{NH}_{4}\right) 2\left(\mathrm{SO}_{4}\right) 2 \cdot 6 \mathrm{H}_{2} \mathrm{O}$.

Problems:

Write the names or formulas of the following salts:
$\mathrm{CaMg}\left(\mathrm{CO}_{3}\right) 2$ \qquad KMgF3 \qquad
sodium ammonium hydrogen phosphate tetrahydrate \qquad
G. Organic chemistry deals with the millions of compounds created by the combination of mainly carbon atoms. Naming these compounds is based upon the number of carbon atoms in the molecule and specific ways the carbon can attach to other atoms. This branch of chemistry will be studied in more depth later in the year.

Unit 3 Objectives

Having studied the unit notes and done the problems, you should be able to:

1. Differentiate between a chemical symbol and a chemical formula.
2. Explain the significance of subscripts and coefficients.
3. Distinguish between atoms, ions, and molecules.
4. Given a formula, state the number of atoms of each element present.
5. Define monatomic ion and polyatomic ion, and oxidation number.
6. Use the periodic table to predict the charge and formula of a monatomic ion.
7. Use the periodic table to predict the charge and formula of a polyatomic ion.
8. List the names, symbols, and oxidation numbers or charges of the most common ions as designated by your instructor.
9. Recognize and give examples of compounds containing polyatomic ions.
10. Write formulas for chemical compounds using oxidation numbers.
11. Name compounds from given chemical formulas, using Roman numerals where necessary.
12. Determine the formula of a compound based upon an older naming system with prefixes or Latin names.
13. Determine the name or formula of acids.
14. Determine the name or formula of hydrated compounds.
15. Determine the name or formula of double or triple salts.
16. Define and distinguish between molecular and ionic compounds.
